Vertical Infrastructure Inspection Using a Quadcopter and Shared Autonomy Control
نویسندگان
چکیده
This paper presents a shared autonomy control scheme for a quadcopter that is suited for inspection of vertical infrastructure — tall man-made structures such as streetlights, electricity poles or the exterior surfaces of buildings. Current approaches to inspection of such structures is slow, expensive, and potentially hazardous. Low-cost aerial platforms with an ability to hover now have sufficient payload and endurance for this kind of task, but require significant human skill to fly. We develop a control architecture that enables synergy between the ground-based operator and the aerial inspection robot. An unskilled operator is assisted by onboard sensing and partial autonomy to safely fly the robot in close proximity to the structure. The operator uses their domain knowledge and problem solving skills to guide the robot in difficult to reach locations to inspect and assess the condition of the infrastructure. The operator commands the robot in a local task coordinate frame with limited degrees of freedom (DOF). For instance: up/down, left/right, toward/away with respect to the infrastructure. We therefore avoid problems of global mapping and navigation while providing an intuitive interface to the operator. We describe algorithms for pole detection, robot velocity estimation with respect to the pole, and position estimation in 3D space as well as the control algorithms and overall system architecture. We present initial results of shared autonomy of a quadrotor with respect to a vertical pole and robot performance is evaluated by comparing with motion capture data. Inkyu Sa Queensland University of Technology, Brisbane, Australia, e-mail: [email protected] Peter Corke Queensland University of Technology, Brisbane, Australia e-mail: [email protected]
منابع مشابه
Inspection of Pole-Like Structures Using a Visual-Inertial Aided VTOL Platform with Shared Autonomy
This paper presents an algorithm and a system for vertical infrastructure inspection using a vertical take-off and landing (VTOL) unmanned aerial vehicle and shared autonomy. Inspecting vertical structures such as light and power distribution poles is a difficult task that is time-consuming, dangerous and expensive. Recently, micro VTOL platforms (i.e., quad-, hexa- and octa-rotors) have been r...
متن کاملMathematical Dynamics, Kinematics Modeling and PID Equation Controller Of QuadCopter
Abstract Quadcopter is the Unmanned Aerial Vehicle that can vertical tack off and landing. its useful platform for many applications in Commercial, civil or military . In this article ,we present the Dynamics and Kinematics model of quadcopter and the effect of forces by introducing two frames on the ground and it’s body, also we design and implement the PID controller t...
متن کاملAdaptive Second-order Sliding Mode Control of UAVs for Civil Applications
Quadcopters, as unmanned aerial vehicles (UAVs), have great potential in civil applications such as surveying, building monitoring, and infrastructure condition assessment. Quadcopters, however, are relatively sensitive to noises and disturbances so that their performance may be quickly downgraded in the case of inadequate control, system uncertainties and/or external disturbances. In this stud...
متن کاملReinforcement Learning-based Quadcopter Control
Analysis of quadcopter dynamics and control is conducted. A linearized quadcopter system is controlled using modern techniques. A MATLAB quadcopter control toolbox is presented for rapid visualization of system response. Waypoint-based trajectory control of a quadcopter is performed and appended to the MATLAB toolbox. Finally, an investigation of control using reinforcement learning is conducted.
متن کاملDevelopment of a Low-Cost Experimental Quadcopter Testbed Using an Arduino Controller and Software
Abstract This paper explains the integration process of an autonomous quadcopter platform and the design of Arduino based novel software architecture that enables the execution of advanced control laws on low-cost off-the-shelf products based frameworks. Here, quadcopter dynamics are explored through the classical nonlinear equations of motion. Next, quadcopter is designed, built and assembled ...
متن کامل